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Nonequilibrium fluctuations in time-dependent diffusion processes
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Dipartimento di Fisica and Istituto Nazionale per la Fisica della Materia, Universita` degli Studi di Milano, via Celoria 16,

20133 Milano, Italy
~Received 11 March 1998; revised manuscript received 29 May 1998!

A fluctuating hydrodynamics approach is presented for the calculation of the structure factor fortime-
dependentnonequilibrium diffusive processes in binary liquid mixtures. The hydrodynamic equations are
linearized around the time-dependent macroscopic state given by the usual phenomenological diffusion equa-
tion. The cases of free diffusion, thermal diffusion, and barodiffusion are considered in detail. The results are
used to describe the low-angle scattered intensity distributions from the time-dependent concentration profiles
during the approach to steady state. The theoretical predictions are found to be in agreement with experimental
data from thermal diffusion and free diffusion experiments. It is shown that in general the presence of non-
equilibrium concentration fluctuations yields a substantial increase in the static structure factor over the equi-
librium value, at least for the cases of free diffusion and thermal diffusion. As in the case of nonequilibrium
fluctuations at steady state, the static structure factor displays a fastk24 divergence at larger wave vectorsk,
and saturation to a constant value fork smaller than a critical wave vectorkRO. It is also shown that the static
structure factor from a sedimenting mixture is actually temporarily lowered below the equilibrium value fork
smaller thankRO. As the steady state is approached, the structure factor loses anyk dependence and it attains
the equilibrium value.@S1063-651X~98!14910-3#

PACS number~s!: 05.40.1j, 05.70.Ln, 66.10.Cb
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I. INTRODUCTION

Equilibrium fluctuations in simple fluids and in binar
mixtures have been studied very extensively in the p
mostly because the invention of the laser and the subseq
refinement of light scattering techniques have allowed th
ough studies both of static and dynamic correlation prop
ties of the fluctuations.

The behavior of the nonequilibrium fluctuations in a flu
under a steady stress condition has attracted much int
only fairly recently, the question being whether under str
the fluctuations retain the same correlation properties a
equilibrium. Particular attention has been dedicated to
study of the system consisting in a horizontal slab of flu
stressed by a steady stabilizing temperature gradient. T
retical calculations, based on kinetic theories@1# and on fluc-
tuating hydrodynamics@2–4#, have shown that the fluctua
tions in this system are long range correlated, their st
structure factor diverging ask24 as the wave vectork goes to
zero. The presence of long range correlations has been i
preted as a result of the coupling of velocity fluctuations w
temperature and concentration fluctuations, due to the p
ence of macroscopic temperature and concentration gr
ents.

In a series of thorough experiments@5–8# Gammon, Law,
Segrè, Sengers, and co-workers have measured the s
structure factor of both simple fluids and binary mixtur
stressed by a stationary thermal gradient, thus providin
neat quantitative check of the theoretical predictions. In
der to measure the nonequilibrium static structure factor t
used low-angle dynamic light scattering, which allow
them to get rid of the strong forward stray light, simply b
cause it is not time correlated. By averaging a scattered
tensity time autocorrelation function over a long period, th
isolated the tiny fluctuating intensity on the top of the stro
PRE 581063-651X/98/58~4!/4361~11!/$15.00
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static stray intensity. Stray light can therefore be elimina
but at the expense of long measurement times. Consequ
dynamic light scattering techniques are not suited to st
time-dependent nonequilibrium fluctuations. This might p
tially explain why experimental studies of the time
dependent nonequilibrium fluctuations have been lacking
til fairly recently.

In this paper we will show a simple way to obtain a th
oretical description of time-dependent nonequilibrium flu
tuations in diffusion processes. The description proce
along the same fluctuating hydrodynamics guidelines of
stationary case. The main difference is that the fluctuat
hydrodynamics equations are not linearized around a ste
state, but instead around a macroscopic nonsteady s
whose time evolution can be obtained from the usual p
nomenological diffusion equation. The time-dependent st
structure factor can be obtained by supplementing the
tionary structure factor with the phenomenological equatio
describing the time evolution of the macroscopic variabl
In the following section we will derive the static structu
factor of the nonequilibrium fluctuations which take place
a binary mixture where a time-dependent concentration g
dient is present. We will explicitly consider the cases of fr
isothermal diffusion, of thermal diffusion, and of a gravit
tionally induced concentration gradient~barodiffusion!. We
will compare the results obtained for thermal diffusion a
free diffusion with the data recently obtained by means o
unique ultra-low-angle static light scattering machine, wh
is able to measure the static intensity of the scattered l
over a two decade range of angles, starting fromu528. This
instrument allowed us to provide the first experimental e
dence of the presence of long range correlated fluctuat
during time-dependent diffusion processes@9,10#.

It is already known that the presence of a stationary gra
tationally induced concentration gradient~barodiffusion!
4361 © 1998 The American Physical Society
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does not produce any enhancement of the mean square
plitude of the fluctuations above the equilibrium val
@11,12#. However, no predictions are available about the ti
evolution leading to the steady state~assuming a homoge
neous, well mixed initial state!. We will show that in this
case the amplitude of the nonequilibrium fluctuations ac
ally falls temporarily below the equilibrium value.

II. THE STRUCTURE FACTOR OF NONEQUILIBRIUM
FLUCTUATIONS

The structure factor is the fundamental tool to descr
fluctuations in a fluid. It is also most appropriate in this d
cussion since we will mainly describe scattering data.

In order to derive the structure factor of the tim
dependent nonequilibrium concentration fluctuations we w
use the fluctuating hydrodynamics~FH! approach@13#. Fluc-
tuating hydrodynamics has been successfully used to
scribe nonequilibrium fluid systems at steady state@1–
4,11,12,14#.

We will now show that a time-dependent theory of no
equilibrium fluctuations in diffusion processes can be o
tained by supplementing the FH equations with phenome
logical equations describing the time evolution of t
macroscopic state of a binary mixture. To simplify the pro
lem we will neglect pressure fluctuations which contribute
Brillouin scattering only@14#. We will also neglect tempera
ture fluctuations, so that the only relevant hydrodynam
variables are the densityr, the concentrationc, and the ve-
locity u of the mixture. Moreover we will assume that th
fluid is at rest. The hydrodynamic equations describing
mixture in the presence of gravity are then@12#

]c

]t
1u•“c52

1

r
“• j , ~1!

]u

]t
52

1

r
“p1v¹2u1g, ~2!

wherer is the mass density of the mixture,c is the weight
fraction of the denser component,j is the mass flux,p is the
hydrostatic pressure,v the kinematic viscosity, andg the
gravitational acceleration vector. The hydrodynamic va
ablesc, r, andu fluctuate both in time and space around
certain average macroscopic value. As customary@13# we
rewrite these variables as the sum of an averaged term a
fluctuating one:

c~x,t !5^c~x,t !&1dc~x,t !, ~3!

r~x,t !5^r~x,t !&1dr~x,t !5^r~x,t !&1rbdc~x,t !, ~4!

u~x,t !5^u~x,t !&1du~x,t !5du~x,t !. ~5!

In writing Eq. ~4! we have assumed that the only releva
density fluctuations are due to concentration fluctuations
that dr5rbdc, whereb5r21(]r/]c)p,T ~the thermal ex-
pansion effect is neglected because we have neglected
perature fluctuations!. Moreover we have inserted in Eq.~5!
the quiescent fluid hypothesis^u&50.

The averaged variables in Eqs.~3!–~5! depend both on
space and time. We will assume that the time associated
m-
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changes in the macroscopic variables is much larger t
those involved in the relaxation of the fluctuations. In th
way the average values and the time Fourier transform
be calculated by integrating over the finite time needed
smooth out the fluctuations to zero@15#. During this time the
macroscopic variables are assumed to be frozen. This
sumption is consistent with our results because, as we
show later, the gravitational field determines an upper lim
for the relaxation time of the fluctuations. In microgravi
conditions the validity of the assumption could be seriou
questioned.

To soften the notations, in the following we will drop th
brackets from the averaged variables and we will not indic
the space-time dependence of both fluctuating and ma
scopic variables.

By linearizing the equations around the macrosco
time-dependent state we obtain

]c

]t
1

1

r
“• j52

]dc

]t
2du•“c2

1

r
“•d j

1
1

r
bdc“• j1“•F, ~6!

1

r
“p2g52

]du

]t
1

1

r
bdc“p1n¹2du1

1

r
“•S, ~7!

where we have added terms containing the random forceF
andS, which describe the spontaneous onset of concentra
and velocity fluctuations, respectively.

Equations~6! and ~7! have to be complemented by ph
nomenological equations which describe the time evolut
of the macroscopic state. In the steady-state theory th
equations are]c/]t50, ]r/]t50, which describe the time
independence of mass-related variables,u50, which stands
for the absence of macroscopic convection,“• j50, which
describes the absence of a net mass transfer in a laye
fluid, and“p5rg, which describes the hydrostatic pressu
variation due to the gravitational field.

In the time-dependent theory we assume that the ma
scopic concentration evolves in time according to the us
diffusion equation

]c

]t
1

1

r
“• j50, ~8!

which describes the time evolution of the macroscopic c
centration, once the dependence of the mass flux from
drodynamic variables is prescribed. We still assume t
macroscopic convection is absent and that a pressure g
ent“p5rg is present inside the mixture.

Moreover we assume that the gradients of the thermo
namic variables are small, so that we can neglect the sp
dependence of the thermophysical properties of the mix
@14#. Under these assumptions Eqs.~6! and ~7! become

]dc

]t
52du•“c2

1

r
“•d j1

1

r
bdc“• j1“•F, ~9!

]du

]t
5bgdc1v¹2du1

1

r
“•S. ~10!
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Equations~9! and ~10! have basically the same form of th
equations found by Segre` and Sengers for a binary liqui
mixture stressed by a steady temperature gradient unde
action of the gravitational field@12#. However, these equa
tions are now complemented by the diffusion equation~8!,
which describes how the“c term contained in Eq.~9!
evolves in time, thus allowing determination of the spectr
of nonequilibrium fluctuations at different times during a d
fusion process.

The termdu•“c in Eq. ~9! represents a source term fo
the concentration fluctuations induced by velocity fluctu
tions. The termbgdc in Eq. ~10! represents the opposit
phenomenon, that is, the presence of velocity fluctuati
induced by concentration fluctuations, due to the presenc
the gravity force.

In order to calculate the correlation properties of the flu
tuating variables we still have to specify the phenomenolo
cal relation which relates the mass fluxj to the thermody-
namic forces. In the general case where the slab of flui
under the action of a stabilizing temperature gradient“T the
mass flux is

j52rDS“c1
kT

T
“T1

kp

p
“pD , ~11!

wherekT is called the thermal diffusion ratio andkp is the
barodiffusion ratio@13#. The three gradient terms in pare
theses describe the Fickean backflow, the Soret-indu
flow, and the sedimentation flow, respectively. Each one
these terms can give rise to important modifications of
structure factor with respect to the thermodynamic equi
rium case. As we shall show, the results are quite un
pected, since the first two terms give rise to an enhancem
while the last actually depresses the mean square ampl
of the long wavelength fluctuations.

The thermal diffusion ratiokT , the barodiffusion ratiokp ,
and the osmotic compressibility (]c/]m)p,T depend on the
concentrationc of the mixture. Because of the small conce
tration gradient assumption previously formulated these
pendencies are here neglected@14#.

By linearizing Eq.~11! for small fluctuations we can now
express the fluctuating part ofj as a function of the hydro
dynamic variables:

“•d j52rD¹2dc1bdc“• j1b“dc• j2rbD“dc•“c.
~12!

Only the first term on the right side of Eq.~12! is relevant to
determine the correlation properties of the nonequilibri
fluctuations, as the second one will simplify with a simil
term coming from Eq.~6!, and the last two terms will cance
out during the following calculations.

In order to calculate the correlations of the fluctuati
variables the spatial and temporal Fourier transforms of E
~9! and ~10! have to be evaluated. We will assume that t
macroscopic temperature and concentration gradients
vertical ~parallel to thez axis and to the gravitational acce
eration g! and that the wave vectork is perpendicular to
these gradients. In this way the wave vector is restraine
the horizontal plane, and the spatial Fourier transform can
the
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evaluated by transforming only the horizontal variablesx and
y. The space-time Fourier transform for the concentrat
fluctuations is thus

dck,v
z,t 5E dtE dx dyc~x,t !exp@ i ~k•x2vt !# ~13!

and an analogous expression holds for the velocity fluct
tions.

In Eq. ~13! the variablesk and v in the lower label are
used to describe the spectral properties of the nonequilibr
fluctuations, while the macroscopic state is identified by
variables in the upper label. The macroscopic variables
not affected by the temporal Fourier transform because
we assumed before, the frequencies associated with them
much smaller than those associated with the fluctuatio
This allows retaining the explicit temporal dependence of
macroscopic variables.

Moreover, since only the transverse velocity fluctuatio
contribute to the Rayleigh scattering@12#, the transformed
momentum equation can be projected in the direction p
pendicular tok by means of the projection operator. Und
these assumptions the Fourier-transformed equations ar

dck,v
z,t ~ iv1Dk2!52dvk,v•“c~z,t !2 ik•Fk,v , ~14!

dvk,v
z,t ~ iv1vk2!5bdck,v

z,t g•~12 k̂k̂!2
i

r
k•Sk,v•~12 k̂k̂!,

~15!

wheredvk,v
z,t represents the transverse velocity fluctuation

fined by

dvk,v
z,t 5duk,v

z,t
•~12 k̂k̂!. ~16!

By combining Eqs.~14! and ~15! one readily obtains

dck,v
z,t @~ iv1Dk2!~ iv1vk2!1bg•“c~z,t !#

52 i ~ iv1vk2!k•Fk,v

2
i

r
k•Sk,v•~12 k̂k̂!•“c~z,t !. ~17!

In order to calculate the correlation properties of the conc
tration fluctuations the correlation functions of the sour
termsF andS still have to be specified. We will assume th
the correlations of these random forces retain their equi
rium values given by@16,14#

^Fk,v
i Fk8,v8

* j &5
kBT

8p4r
DS ]c

]m D
p,T

d i , jd~k2k8!d~v2v8!,

~18!

^@ k̂•Sk,v•~12 k̂k̂!•“c#@ k̂•Sk,v* •~12 k̂k̂!•“c#&

5
kBT

8p4 rvu¹cu2, ~19!

^Fk,v
t Sk8,v8

* lm &50. ~20!
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By combining Eqs.~17!–~20! we obtain the correlation prop
erties of the concentration fluctuations in a thin layer of m
ture characterized by a macroscopic concentration grad
“c(z,t):

^dck,v
z,t dck,v* z,t&

5
kBT

8p4rF ~v21v2k4!Dk2~]c/]m!p,T1vk2u“c~z,t !u2

u~ iv1Dk2!~ iv1vk2!2@R~k!/Rc#vDk4u2 G ,
~21!

whereR(k)/Rc is given by

R~k!

Rc
52

bg•“c~z,t !

vDk4 ~22!

is a Rayleigh number ratio introduced in analogy with co
vective instabilities@11,12#. The Rayleigh number ratio is
defined so that it is positive when the concentration profile
top-heavy~the concentration gradient points upwards!, be-
-
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cause this is the situation which leads to the onset of conv
tive instabilities. As we are mainly interested in the stab
situation where the gradient points downwards, in the f
lowing we will assume thatR(k)/Rc is negative.

It is interesting to calculate an approximate form for E
~21!. The denominator of Eq.~21! can be factorized as (v2

1v1
2 )(v21v2

2 ), where the two roots are given by

v6
2 5

2k4v2

2
X2S 11

D

v D 2

12S 12
R~k!

Rc
D D

v

6H F S 11
D

v D 2

22S 12
R~k!

Rc
D D

v G2

24
D2

v2 S 12
R~k!

Rc
D 2J 1/2C. ~23!

By assuming thatD/v!1 and that24DR(k)/(Rcv)!1 the
two roots arev1

2 5D2k4(12R(k)/Rc)
2 andv2

2 5v2k4, and
Eq. ~21! becomes
^dck,v
z,t dck,v* z,t&5

kBT

8p4r H Dk2~]c/]m!p,T

v21$Dk2@12R~k!/Rc#%
2 1

vk2u“c~z,t !u2

@v21~vk2!2#„v21$Dk2@12R~k!/Rc#%
2
…

J . ~24!
ite
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The assumptionD/v!1 is valid for most binary liquid mix-
tures, as typical values for mixtures of organic fluids arev
'1023 cm2/s andD'1025 cm2/s. The meaning of the as
sumption24DR(k)/(Rcv)!1 will be discussed later. The
second term of Eq.~24!, considered as a function ofv, is the
product of two Lorentzian curves, whose width is given
uv1u and uv2u. As we assumed that24DR(k)/(Rcv)!1,
the Lorentzian of widthDk2@12R(k)/Rc# is much narrower
than the one of widthvk2. By approximating the wider
Lorentzian by its value at maximum the spectrum of t
fluctuations becomes

^dck,v
z,t dck,v* z,t&5Sz,t~k!

2D@12R~k!/Rc#k
2

„v21$D@12R~k!/Rc#k
2%2

…

,

~25!

where the static structure factorSz,t(k) is given by

Sz,t~k!5
kBT

16p4r F S ]c

]m D
p,T

1

12R~k!/Rc

1
u“c~z,t !u2

vDk4

1

12R~k!/Rc
G . ~26!

The spectrum is therefore a Lorentzian with linewidthD@1
2R(k)/Rc#k

2. It is very instructive to see what is the valu
of the associated time constants for2R(k)/Rc@1 and
2R(k)/Rc!1.

If 2R(k)/Rc!1, the time constant becomestdiff
51/(Dk2), that is, the classical diffusion time constant.
2R(k)/Rc@1 @but still smaller thanv/(4D)], then the time
constant istgrav5vk2/(bg“c). While the diffusion time
constant decreases as 1/k2, we find that for2R(k)/Rc@1
the time constant actually increases ask2. As R(k)/Rc5

2tdiff /tgrav, the transition between the two quite oppos
regimes occurs whenR(k)/Rc521, that is, in correspon-
dence to the critical wave vector

kRO5S bg•“c

vD D 1/4

. ~27!

For large values ofk, k.kRO, we are in the diffusive mode
This implies that concentration fluctuations decay because
the smaller length scales diffusion is a fast process. If we
to k,kRO, we are considering fluctuations over length sca
that are so large that other processes are more effective
diffusion in relaxing the fluctuations. What is actually ha
pening is that a concentration fluctuation is associated
density fluctuation and consequently a buoyancy force
generated. If the system is arranged with a built-in conc
tration gradient, then the fluctuation parcel will try to mov
to the layer where the density will be matched. It will also t
to dispose of the excess concentration via diffusion, but
condition 2R(k)/Rc@1 implies that diffusion is slow in
comparison with the buoyancy driven travel to the dens
matching layer. ThekRO value then describes the longe
wavelength at which a concentration fluctuation will pr
dominantly decay via diffusion. Incidentally, at this wav
length the concentration fluctuation time constant attains
largest value, excitations at larger or smaller waveleng
decaying faster. For smaller-k values, buoyancy and drift to
the density-matching layer is the winning mechanism for
relaxation of fluctuations.

We can now examine what is the physical meaning of
condition 24DR(k)/(Rcv)!1, under which the previous
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results have been obtained. If24DR(k)/(Rcv)@1, then the
time needed by the viscosity force to act is so long that
motion of the parcel actually overshoots the dens
matching layer, diffusion still playing an irrelevant role. S
the fluctuations will become overstabilized, and the spectr
will split into the symmetric doublet characteristic of prop
gating fluctuations@11,12#.

The static structure factor introduced with Eq.~26! de-
scribes the static transverse correlation properties of a t
horizontal layer of mixture. To outline how the equilibrium
static structure factor is modified in the nonequilibrium co
dition it is convenient to rewrite Eq.~26! as

Sz,t~k!5SeqF11S“c~z,t !

“cgrav
21D 1

11@k/kRO~z,t !#4G ,
~28!

where

Seq5
kBT

16p4r S ]c

]m D
p,T

~29!

is the equilibrium static structure factor and

“cgrav52
kp

p
“p5bgS ]c

]m D
p,T

~30!

is the equilibrium concentration gradient induced by ba
diffusion @13#.

The first term of Eq.~28! represents the equilibrium con
tribution to the static structure factor while the second o
represents a nonequilibrium contribution due to the prese
of a macroscopic concentration gradient inside the mixtu
The coupling of velocity fluctuations with concentratio
fluctuations due to the presence of the gradient determ
the divergence of the nonequilibrium term ask24 at wave
vectors larger thankRO. At smaller wave vectors the diver
gence is frustrated by the presence of the gravity force,
the nonequilibrium term rolls off to a constant value. Expe
mental evidence of the gravity-induced frustration of conc
tration fluctuations in a binary mixture under a steady te
perature gradient was recently reported by our group@17#.

The most remarkable feature of Eq.~28! is that the non-
equilibrium term can lead to an enhancement or a depres
of the equilibrium static structure factor, depending on
sign of the factor“c/“cgrav21. This point will be discussed
in more detail in Sec. IV B.

We would like to stress here that Eqs.~26! and ~28! are
valid under a great variety of conditions: they describe
static correlation properties in an equilibrium state, in a s
tionary nonequilibrium state, and in a nonequilibrium tim
dependent state.

III. THE STATIC SCATTERED LIGHT

The static structure factor introduced with Eq.~26! de-
scribes the transverse correlation properties of the conce
tion fluctuations in a thin layer of a binary mixture. Th
structure factor can be best analyzed via light scattering.
will consider the scattering setup where the probe beam
aligned with the gravity acceleration. Since the angular d
e
-
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in,

-
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tribution of the scattered intensity changes layer by layer,
overall scattering distribution results from a summation
the scattered intensity distributions from the individual la
ers. We will briefly outline how the superposition of the lig
coming from different layers of fluid contributes to the ove
all scattered intensity.

If we consider the light scattered at an angleu with re-
spect to the incident wave vectorkf we can define the trans
ferred momentum wave vectork. In the case of Rayleigh
scatteringk is given by

k5
4pn

l
sin

u

2
, ~31!

wheren is the index of refraction of the fluid andl is the
wavelength of the incoming beam.

In deriving the structure factor of the concentration flu
tuations we have assumed that the wave vectork lies in the
horizontal plane. As it is apparent from Eq.~31! this is ap-
proximately true only for small scattering angles, that is,
angles where substantial deviations of the nonequilibri
static structure factor from the equilibrium one are expect

The spectral density of the light scattered with wave v
tor k and frequencyv onto a far detector at a distanceR from
the sample is@18#

I ~k,v!5
I 0kf

4

16p2R2«0
2 S ]«

]cD
p,T

2

S~k,v!, ~32!

where I 0 is the intensity of the incident beam,«0 is the
dielectric constant of the sample, andS(k,v) is the overall
dynamic structure factor defined by

S~k,v!5^dck,vdck,v* &. ~33!

This dynamic structure factor is different from that intr
duced with Eq.~25!, since it is defined in terms of the three
dimensional spatial Fourier transform of the concentrat
fluctuations defined by

dck,v5E dzE dx dyE dt dc~x,t !exp@ i ~k•x2vt !#

5E dz dck,v
z,t . ~34!

By assuming that fluctuations taking place in different lay
are not correlated and by inserting Eq.~34! into Eq. ~33! we
obtain that the overall structure factorS(k,v) is just the
superposition of the structure factors due to different lay
of fluid:

S~k,v!5E dẑ dck,v
z,t dck,v* z,t&. ~35!

By integrating Eq.~35! along the frequency axis we obtai
the overall static structure factor:

S~k,t !5E dzSz,t~k!. ~36!

It is convenient to introduce the overall nonequilibrium sta
structure factor
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Sne~k,t !5S~k,t !2aSeq, ~37!

wherea is the thickness of the sample. The nonequilibriu
structure factor defined by Eq.~37! represents the exces
contribution of the nonequilibrium fluctuations to the over
static structure factor, with respect to the equilibrium one

IV. TIME-DEPENDENT DIFFUSION PROCESSES

In the following we will discuss the nonequilibrium time
dependent cases of free diffusion, thermal diffusion, a
barodiffusion in a binary mixture. The features of the sta
structure factor will be presented and, when possible, c
pared with experimental results.

A. Free diffusion

A free diffusion process is usually arranged as follo
@19#. Two miscible fluids are prepared so that they are se
rated by an initially sharp, horizontal boundary. As soon
the fluids are left in contact, a diffusive flow begins to tran
port mass across the interface so that the concentration in
neighborhood of the boundary begins to change. As t
goes by, the thickness of the region involved in the conc
tration change grows. During a free diffusion process
concentration at the top and bottom of the sample is assu
to remain constant. This assumption is true in the case
unbounded diffusion, where two infinitely thick layers
fluid are allowed to diffuse one into each other. In pract
the assumption is valid only during a given time interv
after the beginning of the diffusion process, which depe
on the vertical size of the vessel and on the mutual diffus
coefficientD. As soon as the concentration near the bou
aries begins to change, the features of the macroscopic
fusion process cease to depend on the diffusion coeffic
only, and they are influenced by the height of the vessel a

The typical initial condition of a free diffusion experimen
is the step function concentration profile

c~z,0!5 H c1 , 0,z,h
c2 , h,z,a ~38!

whereh is the position of the initial boundary between th
two fluids anda is the thickness of the two superimpos
layers.

The evolution of the concentration profile during the fr
diffusion process, obtained by solving the diffusion equat
with the initial condition~38!, is @20#

c~z,t !5c01
2

p
~c12c2!(

j

`
1

j
sinS j ph

a D
3expS 2

D j 2p2

a2 t D cos~ j pz!, ~39!

wherez5z/a andc05@c1h1c2(a2h)#/a is the concentra-
tion at the end of the diffusion process.

The time evolution of this concentration profile is show
in Fig. 1 for D51.531026 cm2/s, a50.45 cm,h5a/2, c1
50.75, andc250.25.

Equation~28! together with Eq.~39! solves the problem
of finding the local static structure factor of the nonequil
l
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rium time-dependent fluctuations which take place durin
free diffusion process. Notice that the local structure fac
depends on the specific layer of fluid and is characterized
the actual value of the local concentration gradient“c (“c
depends on the spatial coordinatez!. In order to compare the
theoretical results with low-angle static light scattering da
the overall nonequilibrium static structure factor, defined
Eq. ~37!, must be evaluated. We will assume that the co
centration gradient present inside the fluid is much lar
than that due to barodiffusion. The overall nonequilibriu
static structure factor obtained by combining Eqs.~28! and
~37! and normalized by its equilibrium value is given by

Sne~k,t !

aSeq
5

1

a E dzS“c~z,t !

“cgrav
21D 1

11@k/kRO~z,t !#4 ,

~40!

where in the free diffusive regime“c is given by@21#

“c~z,t !5
c12c2

A4pDt
expF2

~z2h!2

4Dt G . ~41!

The nonequilibrium static structure factor calculated fro
Eq. ~40! is plotted at different times in Fig. 2, where th
parameters are the same used in Fig. 1 andb50.27, v
51.35 cm2/s, (]c/]m)p,T57.731027 s2/cm2.
The nonequilibrium static structure factor experimenta
measured by means of very-low-angle static light scatter
during a free diffusion experiment and normalized by

FIG. 1. Time evolution of the concentration profile plotted
the normalized heightz during a diffusion process. The horizonta
and vertical axes are exchanged for convenience. The diffusion
efficient is D51.531026 cm2/s, the thickness of the sample isa
50.45 cm. Initially two horizontal layers of the binary mixture
the uniform concentrationsc150.75 andc250.25 are separated b
a horizontal interface at the midheighth5a/2. In the early stages o
the diffusion process the concentration at the boundariesz50 anda
does not change in time, as the diffusive remixing occurs o
around the midheight. This is the free diffusion regime. When
concentration near the boundaries begins to change, then the sy
enters into the restricted diffusion regime.
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equilibrium value is plotted in Fig. 3@10#. The values of the
parameters in Fig. 2 correspond to the experimental co
tions used during the measurement of the data in Fig. 3
that a direct comparison is possible.

These data were taken by using a near-critical anili
cyclohexane mixture. The mixture was prepared 3 °C be
its critical temperatureTc , in its two-phase region, so as t
obtain two macroscopic phases separated by a horizo
sharp boundary. A sudden temperature jump was then
plied to bring the mixture 1 °C aboveTc . After the tempera-
ture jump is applied the two macroscopic phases beco
completely miscible, and the free diffusion process starts

The structure factor retains essentially the same feat
outlined before: thek24 behavior fork.kRO, due to the
coupling between velocity and concentration fluctuatio
and a roll off to a constant value for smaller wave vecto
due to the restoring action of the buoyancy force.

There are a few features worth pointing out. Figures 2 a
3 show that initially the forward scattered intensity does
change in time. From Eq.~41! we can calculate the value o
the nonequilibrium static structure factor for vanishing
small wave vectors:

Sne~0,t !

aSeq
5

c12c2

a“cgrav
21, ~42!

FIG. 2. Normalized overall nonequilibrium static structure fa
tor calculated at different times during the diffusion process a
plotted vs the wave vectork. The parameters correspond to tho
used in Fig. 1. At large wave vectors the structure factor displ
thek24 power law behavior characteristic of velocity-induced no
equilibrium concentration fluctuations. At smaller wave vectors
structure factor rolls off at a constant value because gravity inhi
the large wavelength fluctuations. The amplitude of the struc
factor at small wave vector is initially constant and then sudde
drops. This amplitude is proportional to the concentration diff
ence near the boundaries. As shown in Fig. 1, during the free
fusion regime this concentration difference is constant, and
changes rather sharply when the system enters the restricted
sion regime.
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wherec1 andc2 are the concentrations at the top and botto
layers inside the sample. The term21 on the right side of
Eq. ~42! becomes relevant only near equilibrium. Equati
~42! explains why in Figs. 2 and 3 the scattered intens
extrapolated at zero angle is at first stationary and then s
denly drops. At firstc12c2 is constant because only a th
layer at the midheight of the mixture is involved in the d
fusive process. The drop corresponds to the transition fr
the free diffusion regime to the restricted diffusion on
where the concentration near the boundaries is a ti
dependent quantity@22#. During the free diffusion regime
the agreement between the low wave vector values of
structure factors shown in Figs. 2 and 3 is within 40%, wh
is satisfactory if one considers the uncertainty in refere
data for (]c/]m)p,T .

Figures 2 and 3 also show that the curves roll off
smaller wave vectors as time goes by. We can estimate
the roll off wave vector should evolve in time by assumi
that its value is mostly determined by the midheight lay
where the concentration gradient is maximum. From E
~27! and~41! the time dependence of the roll off wave vect
is

kro5F bg

nD

1

A4pDt
G 1/4

5At21/8. ~43!

The exponent21/8 is in fair agreement with the value20.11
measured in the experiment described in Ref.@10#, and the

d

s
-
e
ts
e
y
-
if-
it
fu-

FIG. 3. Normalized overall nonequilibrium static structure fa
tor measured by means of low-angle static light scattering. T
structure factors are measured at different times during the diffu
process and plotted vs the wave vectork @10#. The sample is the
binary mixture aniline-cyclohexane prepared at its critical conc
trationc50.47. The mixture phase separates atTc2T53 K, where
c12c250.5, and the diffusive process is started by suddenly rais
the temperature above the critical one atT2Tc51 K. The param-
eters used in Figs. 1 and 2 correspond to the experimental situa
described here, so that a quantitative comparison of the resul
possible. The features of the structure factor closely mirror thos
the calculated one shown in Fig. 2.
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measured value of the prefactorA is about 25% smaller than
the value calculated by using Eq.~42! and reference data.

B. Thermal diffusion

When a temperature gradient is applied to a liquid m
ture a macroscopic mass flux is induced@23#. This is the
thermal diffusion or Soret effect. At steady state a mac
scopic concentration gradient is produced such that the
diffusive mass fluxj vanishes, the mass flow due to therm
diffusion being exactly balanced by the ordinary diffusi
backflow. From Eq.~11! the steady-state Soret-induced co
centration gradient in the absence of a gravitational field

“cSoret52
kT

T
“T. ~44!

In the following we will assume that the sample is a ho
zontal layer of a binary mixture withkT.0 and that the
temperature gradient is applied by heating the layer fr
above. This is the stable configuration that avoids the on
of convective instabilities.

Some theories@12,14# have recently described the no
equilibrium fluctuations in a mixture at steady state. The p
dictions of these theories have been checked by Sengers
co-workers@7,8#. However, so far no description has be
provided for the nonequilibrium fluctuations during the tra
sient after the application of the temperature gradient.
this purpose we can use Eq.~28!, complemented by the so
lution of the diffusion equation~8!, under the appropriate
boundary and initial conditions. For a mixture initially at th
uniform concentrationc0 and bounded by impermeable su
faces atz50 anda these conditions are

c5c0 , 0<z<a, t50 ~45!

and

“c5“cSoret, z50,a, t.0. ~46!

The boundary conditions~46! arise from the fact that the
concentration gradient must reach instantaneously its ste
state value in the layers where the mass flow is zero, as
pointed out by Archibald@19#. The diffusion equation with
the boundary conditions~46! and the initial condition~45!
can be solved by using the customary method of separa
of variables@20# to obtain

c~z,t !5c01a“cSoretH 1

2
2z2

2

p2 (
j 51

`
1

j 2 @12~21! j #

3cos~ j pz!expS 2
j 2p2D

a2 t D J . ~47!

In writing Eq. ~47! we have assumed that the thermalizati
of the mixture is attained almost instantaneously with resp
to the time needed to reach the steady concentration pr
defined by Eq.~44!. This assumption is valid for most mix
tures, as a typical value of the thermal diffusivity isDT
'1023 cm2/s and the diffusion coefficient is usually small
than 1025 cm2/s.
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The concentration profiles obtained from Eq.~47! are
plotted in Fig. 4 at different times during the transient. T
curves in Fig. 4 correspond toa50.1 cm,“T5160 K/cm,
T5315 K, D51.331026 cm2/s, andkT53.5. This choice
of the parameters corresponds to the experimental situa
that will be described shortly.

We use the same procedure outlined in the free diffus
case to calculate the overall nonequilibrium static struct
factor via Eqs.~40! and~47!. The results are plotted in Fig.
at different times~the parameters used are the same use
Fig. 4!. The inset of Fig. 5 shows the structure factors r
caled by their value atk50. From the inset it is apparen
how the roll off wave vector varies within a very narro
range of values during the thermal diffusion process. Ind
the roll off position is dictated by the magnitude of the gr
dient. During the transient the gradient close to the bou
aries is locked to the steady-state one. Due to the high
dient, these are the regions that contribute most to
structure factor and therefore are mainly responsible for
location of the roll off.

Figure 6 shows the static structure factor as determined
means of low-angle light scattering@9#. A 1 mm thick hori-
zontal layer of a near-critical aniline-cyclohexane bina
mixture was used to obtain these data. The mixture was k
about 12 K aboveTc , in its one-phase region, and a sym
metrical 16 K vertical temperature difference was sudde
applied across it~heating from above!, so as to start the
thermal diffusion process. The inset of Fig. 6 shows the s
tering data rescaled by the forward scattered intensity. Th
scaled data confirm that the roll off position is almost s

FIG. 4. Time evolution of the concentration profile plotte
vs the normalized heightz during a thermal diffusion process
The horizontal and vertical axes are exchanged for convenie
The initial concentration isc050.5, the diffusion coefficient
D51.331026 cm2/s, the temperature gradient“T5160 K/cm, the
thermal diffusion ratiokT53.5, and the temperature corresponds
T5315 K. The concentration is initially uniform. As soon as th
temperature gradient is applied, the concentration begins to ch
near the boundaries and the concentration gradient there attain
stantaneously its steady-state value“cSoret. At steady state a linea
concentration profile is formed inside the sample.
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tionary. According to Eq.~42! the forward scattered intensit
provides a measure of the difference of the concentra
near the boundaries. By using Eqs.~42! and~47! we find that
this concentration difference changes in time according
the law

Sne~0,t !

aSeq
5

¹cSoret

¹cgrav
F12

8

p2 expS 2
p2D

a2 t D G21. ~48!

In writing Eq. ~47! we have assumed thatt@a2/(9p2D), so
that the early stages of the thermal diffusion process can
neglected. Equation~48! is in good agreement with the ex
perimental results presented in Ref.@9#.

C. Barodiffusion: gravitationally induced
concentration gradients

The static structure factor of a binary mixture in an eq
librium state is well known@24#, and for ordinary fluids is
completely featureless: the scattered intensity distributio
constant at all scattering angles.

In a mixture, gravity gives rise to sedimentation, a dow
ward mass flow of the denser component. This create
macroscopic concentration gradient, which in turn gives r
to a diffusive backflow. Eventually a stationary state
reached, where the two mass flows counterbalance e
other. The gradient at steady state is given by Eq.~30!. Large
gradients are observed in solutions of macromolecules

FIG. 5. Normalized overall nonequilibrium static structure fa
tor calculated at different times during the thermal diffusion proc
and plotted vs the wave vectork. The parameters correspond
those used in Fig. 4. The curves retain the same features discu
in the free diffusion case: thek24 power law behavior at large wav
vector and the gravity-induced roll off at smaller wave vecto
However, in this case the roll off wave vector is almost stationa
as it depends on the magnitude of the concentration gradient
the boundaries, where the gradient attains its steady-state valu
most instantaneously. This is best shown in the inset, where
structure factors are normalized by their small wave vector valu
The parameters correspond to those used in Fig. 4.
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large molecular weightM @M is proportional to (]c/]m)p,T#
or for smaller molecules under the action of a centrifug
They are also large in the vicinity of critical points, whe
(]c/]m)p,T diverges. One might ask if the gravitational
induced concentration gradient gives rise to a coupling
tween velocity and concentration fluctuations. Seg`,
Schmitz, and Sengers@11# showed that the presence of
steady gravitational gradient does not affect the static st
ture factor of a simple fluid and Segre` and Sengers@12#
suggested that this should also hold true for a binary mixtu
No predictions are available to describe what happens du
the buildup of the sedimentation gradient, starting from
homogeneous state.

We will show that, at variance with the free diffusion an
thermal diffusion cases, no enhancement of the fluctuati
does occur during the transient, and indeed the fluctuat
are depressed below the equilibrium value for excitat
wave vectors smaller than the roll off onekRO.

The static structure factor introduced with Eq.~28!, and
hence the scattered intensity, is given by the sum of
equilibrium term (]c/]m)p,T and a term accounting for non
equilibrium fluctuations. This last term, however, can
positive or negative, depending on the sign of the fac
“c/“cgrav21.

s
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.
,
ar
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FIG. 6. Normalized overall nonequilibrium static structure fa
tor measured at different times during the thermal diffusion proc
by means of low-angle static light scattering, and plotted vs
wave vectork @9#. The sample is the binary mixture aniline
cyclohexane prepared at its critical concentrationc50.47 and kept
in its homogeneous state atT2Tc512 K. The experiment is started
by applying a steady temperature gradient to the mixture, so th
concentration gradient develops because of the Soret effect@23#.
The inset shows the structure factors normalized by their valu
k50, and confirms that the roll off wave vector is almost stationa
during the thermal diffusion process. The parameters used in Fig
and 5 correspond to the experimental situation described here
that a direct quantitative comparison is possible. The features o
structure factor closely mirror those of the calculated one show
Fig. 5.
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If the system has reached the steady-state gradient v
“cgrav, then one immediately recovers the result describ
by Segre` and Sengers@12#, namely, the equilibrium structur
factor is not modified by the presence of gravity. Notice th
in the cases of free diffusion and thermal diffusion, the act
gradient“c is usually much larger than“cgrav, and this
explains why the nonequilibrium fluctuations make the sc
tered intensity increase well above the equilibrium value.
the sedimentation case, however, if one starts with a ho
geneous, well mixed state, the actual gradient will always
smaller than“cgrav, and therefore, quite unexpectedly, th
amplitude of the nonequilibrium fluctuations will be small
than the equilibrium one at small wave vectors.

We will present a calculation of the time evolution of th
static structure factor from a sedimenting sample under r
istic estimates. To do so, we first calculate the tim
dependent concentration profiles in the same way outline
the thermal diffusion case. The profiles have the same qu
tative evolution of the ones shown in Fig. 4, the only diffe
ences being that the steady-state concentration gradie
Eqs. ~46! and ~47! used to calculate the profiles is no
“cgrav, and that the time scales involved have changed,
to the different value of the diffusion coefficient.

Equation~28! together with Eqs.~36! and~47! solves the
problem of finding the overall static structure factor for t
sedimenting binary mixture. In Figs. 7 and 8 we show
calculated time evolution of the overall static structure fac
normalized by its equilibrium value for a colloidal suspe
sion of polystyrene particles in water (r 5100 nm), starting

FIG. 7. Normalized overall structure factor calculated at diff
ent times during the early stages of a sedimentation process
plotted vs the wave vectork. At first the sample is at uniform
concentration and the structure factor is flat. As sedimentation
gins, the structure factor decreases below the equilibrium valu
small wave vectors. The physical system modeled here corresp
to polystyrene particles with a radius of 100 nm immersed in wa
The initial uniform concentration isc050.01, the temperatureT
5300 K, the kinematic viscosityv50.01 cm2/s, the diffusion co-
efficient D52.231028 cm2/s, b50.052, and (]c/]m)p,T

51023 s2/cm2.
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from a homogeneous concentration condition. The ini
concentration isc050.01, the temperatureT5300 K, the
kinematic viscosity v50.01 cm2/s, the diffusion coef-
ficient D52.231028 cm2/s, b50.052, and (]c/]m)p,T
51023 s2/cm2. From Fig. 7 one can notice that indeed in t
early phases of the process a depression in the structure
tor below the equilibrium value develops at small wave ve
tors. Figure 8 shows that as the steady state is approache
structure factor tends to level off to the equilibrium valu
One can also notice that the effect is not very pronoun
and probably hard to measure in a real experiment.

V. SUMMARY AND CONCLUSIONS

We have presented an extension of the fluctuating hyd
dynamics theory to the description of time-dependent n
equilibrium fluctuations. It is shown that under realistic a
sumptions, the theory already developed for steady-s
nonequilibrium fluctuations can be used to account for
transient behavior by complementing the steady-state e
tions with those describing the evolution of the macrosco
concentration gradients. The role of velocity fluctuations
the principal mechanism leading to anomalously large c
centration fluctuations is discussed together with the anta
nizing effect due to spontaneous concentration fluctuation
the presence of gravitational acceleration. Three typical
fusion processes are considered, namely, free diffusion, t
mal diffusion, and barodiffusion. The time evolution of th
concentration gradients during the approach to steady sta
recalled for the three cases, and a small section is dedic
to the calculation of the scattered intensity distribution fro
the liquid layers that host the gradients. The predictions
compared with experimental results from thermal diffusi
and free diffusion experiments, and good agreemen
found. In both cases the fluctuations do exhibit a pronoun

-
nd

e-
at
ds

r.

FIG. 8. Normalized overall structure factor calculated at diffe
ent times during the intermediate and late stages of a sediment
process and plotted vs the wave vectork. As the equilibrium state is
approached the low-k depression in the structure factor gradua
disappears. The physical system is the same depicted in Fig. 7
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enhancement with respect to the equilibrium value during
transient to steady state. Quite different is the case of b
diffusion. It is predicted that during the transient, the me
square amplitude of the fluctuations is actually smaller th
the equilibrium one, a result that is rather nonintuitive. W
show that the presence of the gravitational gradient actu
depresses the equilibrium fluctuations below their thermo
namic value in the early phases of the transient, since bu
ancy actually ‘‘hides away’’ spontaneous fluctuations
drifting them along the gradient until they rest in a densi
matching layer. This process is more effective at lon
wavelength, and the calculated scattered intensity prese
hole around the main beam position. As the steady sta
approached, the amplitude of the fluctuations gradually
tains its thermodynamic value, and the scattered inten
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becomes constant, in agreement with the existing theore
predictions.

It is pointed out that the validity of the fluctuating hydro
dynamic approach rests under the assumption that pr
average quantities can be defined. This is the case
ground-based situations, where gravity actually prevents
amplitude of long wavelength fluctuations from divergin
Microgravity conditions might render this assumption qu
questionable.
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